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Abstract

A micromechanics theory is set forth for classical, or Love±Kirchho� plate. A generalized eigenstrain theory, an
eigen-curvature formulation, is proposed, which can be viewed as the analogue, or counterpart of the eigenstrain

formulation in linear elasticity. This thin plate version of micromechanics is capable of dealing with heterogeneous
inclusions, or inhomogeneities, whose size is comparable with the thickness of thin plates, under these
circumstances, the continuum micromechanics theory is no longer applicable. The paper consists of three parts. In

the ®rst part, the solution of the elliptical inclusion in an in®nite thin plate is revised. In the second part, several
variational inequalities of the Love±Kirchho� plate are derived, including a Hashin±Shtrikman/Talbot±Willis type
principle. In the third part, as an application, exact variational estimates are given to bound the e�ective elastic

sti�ness, and a self-consistent scheme is also discussed. The newly derived bounds are congruous with Love±
Kirchho� plate theory, i.e. they are genetic to the governing equations of Love±Kirchho� plate. They may serve as
the alternatives together with the Hashin±Shtrikman bounds in linear elastostatics in the design process of
composite plates. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The micromechanics of elastic and inelastic materials have been expanded vastly in the past two

decades (Mura, 1987; Nemat-Nasser and Hori, 1993 and references therein). The main impetus for such

progress is the need for understanding behaviors of various composite materials, which occupy the

center stage of modern technology. However, from civil engineering, or structural mechanics point of

view, there is still a gap between the established micromechanics theory and the engineering design

practice. When structures are made of composite materials (indeed they are, most of them, if not all of

them), to assess the overall elastic sti�ness of a structure, one has to consider the particular type of

structure theory that is chosen in the design process. In practice, when a composite plate has a de®nitive
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structure, such as a sandwich plate, or laminar plate in general, to evaluate the overall elastic sti�ness of
the plate structure, a class of composite plate theories have been developed in last half century, which
take into account the speci®c micro-structure of the plate (e.g. Christensen, 1979; Parton and
Kudryavtsev, 1993). Nevertheless, for the composite structures that are made of several random-
distributed heterogeneous materials, to this author's knowledge, there is no systematic theory available
to evaluate the overall e�ective elastic sti�ness of the structure.

The folk wisdom on the subject is: if a structure is made of random-distributed, or isotropic
unstructured, composite materials, one may ®rst evaluate the overall e�ective elastic modulus by taking
the object as a three-dimensional (3D) elastic medium, and then apply the particular structural theory to
the equivalent elastic body. There are ¯aws or limitations in this type of design philosophy. In general,
the kinematic assumptions of di�erent structural theories, the director theory of plates and shells for
instance (Naghdi, 1963, 1972), always introduce internal constrains on constitutive relations, such that,
the approximated constitutive relations, or the structural constitutive relations are always anisotropic in
character, and consequently di�er from the constitutive relations of 3D isotropic elastic body, because
the structural constitutive relations are special ``projection'' of 3D constitutive relations. For thin plate,
in particular, the Love±Kirchho� hypothesis (Love, 1926) assumes that the transverse shear modulus
within the plate's cross section is in®nitive, and consequently the transverse shear deformation of the
cross section is always zero under the ®nite shear resultance, which is the source of induced
``anisotropy''. Lucid accounts on projection of linear elastic constitutive laws onto plates and shells are
given by Naghdi (1963, 1972). Apparently, there are fundamental distinctions between the concept of
elastic modulus in a continuum and the concept of elastic sti�ness in a speci®c structure, though,
unfortunately, these di�erences are sometimes overlooked by practitioners. It is our opinion that any
unscrupulous use of the overall elastic modulus derived from micromechanics of linear elasticity will not
be consistent with the type of structural theory adopted in design process.

In addition, continuum micromechanics is based on the notion of representative volume element (Hill,
1963a). If the size of an inclusion is large enough in comparison with the thickness of a plate
(mathematically speaking, if they are in the same order), the concept of representative volume element
will be no longer valid, because it has lost its original statistical implication. In reality, most structural
components, such as beams, plates, and shells, are lower order dimensional manifolds, meaning that the
characteristic length in thickness direction is much smaller than those in the other directions; thus,
situations may occur that the size of inhomogeneities in a structure is in the same order of the thickness
of the structure, which may lead to another type inaccuracies if one applies continuum micromechanics
without discretion.

In this paper, we develop a micromechanics model within the framework of thin plate theory itself.
The proposed congruous theory of micromechanics is based upon the following assumptions:

(i) The composite plate is assumed to ful®l all the kinematic assumptions of Love±Kirchho� plates.
(ii) The composite plate is made of several di�erent constituents, and each phase of the composite is
dominant in the thickness direction of the plate, or at least approximately.

In other words, the composite plate that we are concerned with, is homogeneous in thickness direction
of the plate, whereas its elastic sti�ness, or compliance varies on the plates' middle surface. This allows
us to replace the notion of representative volume in three-dimensional continuum by a notion of
representative surface area on the plate's middle surfaces. Fig. 1 illustrates an ideal physical model of
such composite thin plate, which is considered to be macroscopically isotropic within the plane surface.
Since the composite plate is homogeneous in thickness direction of the plate, one may slice o� its middle
plane from the plate to obtain the representative surface area. In continuum microelasticity, the length
scale of the representative element is unspeci®ed; it can be viewed as a very small quantity
macroscopically, whereas it can be also viewed as in®nity microscopically. In the theory of Love±
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Kirchho� plate, the lateral dimension of the representative area element is bounded below; which has to
be large enough comparing with the thickness of the plate, such that any boundary-value problem of the
thin plate equations involved with a surface representative area element will make sense under the
Love±Kirchho� kinematic assumptions. In consequence, the Love±Kirchho� plate theory introduces an
intrinsic length scale h, which de®nes the scale for its associated ``micromechanics''. Nevertheless, the
lateral dimensions of inhomogeneities, and inclusions within a representative surface area element are
allowed to be arbitrarily small, since the governing equations of the thin plate is valid pointwise, or can
be treated as ``®eld equations''. Another substantial restriction in this model is the requirement that a
composite plate has to be homogeneous in thickness direction. In actual practice, such restriction on the
distribution of inhomogeneities of the plate might be relaxed to as being approximately ful®lled.

In fact, the idea of developing independent micromechanics for structural theories is not new; Qin et
al. (1991) apparently are the ®rst group of people who realized that there is a parallel analogue between
continuum micromechanics and structural micromechanics, and attempted to explore the possibilities.
Unfortunately, the early study was reluctant to adopt the notion of eigen-curvature, showing
sentimental string attached to continuum micromechanics, and it had not been carried out to ®nal stage.
The paper is organized as follows. In Section 2 and Appendices A and B, the inclusion theory of the
thin plate is reformulated to amend the previous results. In passing, several elementary lemmas are
stated, which are instrumental to establish the average ensemble properties of a composite thin plate. In
Section 3, another important technical ingredient of micromechanics, the well-known Hashin±Shtrikman
variational principle, is studied, whose presence is speculated to be in every conservative, elliptic
systems. The recent extensions to piezoelectric medium and strain gradient dependent elasticity are clear
evidences (Bisegna and Luciano, 1996; Smyshlyaev and Fleck, 1994). In Section 4, explicit bounds for
thin plate's rigidity are discussed and a self-consistent estimate is also presented. The emphasis here is
placed on the di�erences between the micromechanics of linear elasticity and that of Love±Kirchho�
plate theory.

2. Generalized eigenstrain (eigen-curvature) formulation

2.1. Preliminary

There are many treatises on thin plate theory; for our purpose, Love (1926) or Timoshenko and
Woinowsky-Krieger (1959) is su�cient. For easy reference, the basic properties of thin plates are

Fig. 1. The physical model of a thin plate made by unstructured composite materials.
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provided when they are needed. Assume that O is a simply connected, bounded region in R2, which has
a smooth boundary; subsequently, the normal vector, n, and tangential vector, s, on @O are uniquely
de®ned1. The material space of the plate is de®ned as: O� �ÿh=2, h=2� � R3, (see Fig. 2), where h is the
thickness of the plate made of composite material. We assume that the plate has n di�erent phases, and
each phase has a di�erent elastic modulus. The de¯ection of the plate is de®ned as the mapping w:O 7ÿ
4R: The deformed middle surface of the plate is the graph f�O, w� � R3g: As an a priori condition, all
the kinematic assumptions (the Love±Kirchho� for instance) about the plate are assumed automatically
ful®lled for the composite plate under consideration.

The curvature of the plate is de®ned as:

kab � ÿ @ 2w

@xa@xb
�1�

where (and in the rest of the paper) the Greek index always ranges from 1 to 2. The constitutive
relations of linear elastic plate are expressed in terms of moments and curvatures:

mab � LabzZkzZ �2�

kab � NabzZmzZ �3�
where LabzZ, and NabzZ are elastic sti�ness and compliance tensors, respectively. The equilibrium
equation of thin plates is

mab, ab � q � 0 �4�
Let MnMMabnanb, MnsMMabnasb, QnMMab; bna, where na, sb are components of the normal and
tangential vectors of @O: The typical boundary conditions can be posed as

Clamped boundary conditions:

w � ŵ;
@w

@n
� ĉn 8x 2 @O �5�

Fig. 2. The con®guration of a thin plate.

1 Consequently, we save some troubles in dealing with the corner conditions.
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Force prescribed boundary conditions:

Mn � M̂n; VnMQn � @Mns

@s
� V̂n 8x 2 @O �6�

Simply supported boundary condition:

w � ŵ; Mn � M̂n 8x 2 @O �7�

Mixed type boundary conditions can be posed by blending them together. In this paper, we are mainly
interested in the purely de¯ection prescribed boundary condition (5) and purely force prescribed
boundary condition (6). According to convention, the de¯ection, w, that satis®es de¯ection prescribed
boundary condition (5) is referred to as the kinematic admissible de¯ection ®eld; whereas, the moment
tensor, mab, that satis®es Eq. (6) and the equilibrium equation (4) is referred to as the statically
admissible moment ®eld. Before proceeding further, it would be expedient to review some basic formulas
of thin plates.

Lemma 2.1. Let W0�O� � fwjw 2 H 1�O�, w � @w
@n � 0g, kab � ÿw,ab and m0

ab 2 c2�O�: The condition� �
O
m0

abkab dO � 0, 8w 2W0�O� �8�

implies that: m0
ab, ab � 0, 8x 2 O:

Proof. Integration by parts yields� �
O
m0

abkab dO �
�
@O

�
Q0

n �
@M0

ns

@s

�
w dSÿ

�
@O

m0
n

@w

@n
dSÿ

� �
O
m0

ab, abw dO � ÿ
� �

O
m0

ab, abw dO

The claim then follows immediately. T

Lemma 2.2. Let kab 2 C 2�O�, mab 2 C 2
0 �O�, and mab, ab � 0: The condition� �

O
mabkab dO � 0 �9�

implies

Eagkab, bg � 0, 8x 2 intfOg �10�

if ka, b are smooth enough.

Note that where Eab, is the 2D permutation symbol, which is de®ned as

Eab �
8<: 1; a > b
0; a � b
ÿ1; a < b

�11�

Proof. Since mab, ab � 0, there exists smooth function f 2 C 4
0�O� such that

S. Li / International Journal of Solids and Structures 37 (2000) 5599±5628 5603



mab � Eagf,gb �12�

By Gauss theorem and integration by parts,� �
O
kabEagf,gb dO �

�
@O

Eagf,gkabnb dSÿ
�
@O

Eagfkab, bng dS�
� �

O
Eagkab, bgf dO �

� �
O
Eagkab, bgf dO

� 0

Eq. (10) follows immediately. T

Lemma 2.3. Suppose mab, ab � 0: The following identity holds

1

jOj
� �

O
mab dO � 1

2jOj
�
@O

�
mzaxbnz �mZbxanZ ÿmzZ, Zxaxbnz

	
dS �13�

Proof. First one may verify the following identity

mab �
@�mzaxb�
@x z

� @�mZbxa�
@xZ

� 1

2
mzZ, zZxaxb ÿ 1

2

@ 2�mzZxaxb�
@x z@xZ

�14�

If mzZ, zZ � 0, then

mab �
@�mzaxb�
@x z

� @�mZbxa�
@xZ

� 1

2

@ 2�mzZxaxb �
@x z@xZ

�15�

Eq. (13) follows immediately by Gauss theorem. T
De®ne

�fMhfiM 1

jOj
� �

O
f dO: �16�

It is relatively straightforward to show that

Lemma 2.4. Suppose mab, ab � 0, the following identities hold:

1.

1

jOj
�
@O

ÿ
mabna ÿ hmabina

�ÿ
w,b ÿ hw,bi

�
dS� 1

jOj
�
@O

ÿ
mab, anb ÿ hmab, ainb

�ÿ
wÿ hw,zix z

�
dS

� hmi:hki ÿ hm:ki �17�

2.
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1

jOj
�
@O

ÿ
mabna ÿ hmabina

�ÿ
w,b � hkgbix g

�
dS� 1

jOj�
@O

�
mab,a nb ÿm0

ab, anb

��
w� 1

2
hkzZix zxZ

�
dS � m0

ab,a nb

jOj�
@O

�
w� 1

2
hkzZix zxZ

�
dS� hmi:hki ÿ hm:ki

�18�

where m0
ab, b is any constant. T

2.2. The solution of elliptical inclusion problem

The elliptical inclusion problem in classical plate theory was ®rst attempted by Qin et al. (1991).
Nevertheless, the solution provided by Qin et al. is derived as a degenerated case of the 3D linear
elasticity solution, and it appears that there may be few errors in the calculation; therefore it is
worthwhile revising the solution. To start with, we consider the fundamental solution of an isotropic
thin plate, which is governed by the following biharmonic equation

Dr 2r 2wG
ÿ
x, x 0

� � d�xÿ x 0 � �19�
where DMEh3=�12�1ÿ n2��, is elastic rigidity, and n is the Poisson ratio. Note that r 2�r 2

x m
�r 2

x 0m
: The

solution of Eq. (19) is well known:

wG
ÿ
x, x 0

� � 1

8pD
r2 ln r �20�

where rMjx 0 ÿ xj � ��������x 01p ÿx1�2��x 02ÿx2� 2: Consider r,aM @ r
@x 0a
� cos�r, x 0aÿxa�, x 0a ÿ xa � rr,a: It is not

di�cult to ®nd that

kGab � ÿ
@ 2wG

@xa@xb
� ÿ

�
dab
8pD
�2 ln r� 1� � 1

4pD
r,ar,b

�
�21�

mG
ab � ÿ

1

4p

�
�1ÿ n�r,ar,b � dab

�
1� n�ln r� 1� ÿ �1ÿ n�

2

��
�22�

Subsequently,

mG
ab, g � ÿ

1

4pr
��1� n�dabr,g � �1ÿ n�ÿdagr,b � dbgr,a ÿ 2r,ar,br,g

�	 �23�

Obviously, mG
ab; g40, as r41:We now consider the thin plate's version of ``Eshelby problem'': an

in®nite plate with no external load, in which there is elliptical inclusion, Oe, embedded at the center (see
Fig. 3) and there is an eigen-curvature ®eld prescribed inside the elliptical inclusion, i.e.

k�ab�x� �
�
k�ab 8x 2 Oe

0 8x 2 OnOe
�24�

The equilibrium equation then takes the form
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mab, ab �m�ab, ab � 0 �25�

where m�ab is the induced eigen-moment, m�ab�ÿLabzZk
�
zZ: The prescribed eigen-curvature ®eld may su�er

discontinuity across the boundary of the inclusion, and the derivatives of k�ab may be understood in a
distribution sense. The integral equation for the thin plate becomes

w�x� ÿ
�
G1

mab, a�x 0 �nb�x 0 �wG
ÿ
x, x 0

�
dS 0 �

�
G1

mab�x 0 �nb�x 0 �wG
,a

ÿ
x, x 0

�
dS 0

ÿ
�
G1

mG
ab

ÿ
x, x 0

�
w,a�x 0 �nb�x 0 � dS 0 �

�
G1

mG
ab, b

ÿ
x, x 0

�
w�x 0 �na�x 0 � dS 0

�
� �

Oe

k�ab�x 0 �mG
ab

ÿ
x, x 0

�
dO 0 �26�

Note that all the derivatives in Eq. (26) are taken with respect to x '. Since w�,a, m�ab, m�ab; g40, as
jxj41, it is reasonable to assume that w,a, mab, mab; g40 as jxj41 By considering the behaviours of
the Green's function, perturbation ®eld, w�x�, and the eigen-deformation ®eld at the in®nity, the
de¯ection ®eld induced by eigen-curvature can then be described as

w�x� �
� �

Oe

k�ab�x 0 �mG
ab

ÿ
x, x 0

�
dO 0 �

� �
O
k�ab�x 0 �mG

ab
�x 0 ÿ x� dO 0 �27�

If the eigen-curvature is uniform inside the inclusion, we have

w�x� � ÿk
�
ab

4p

� �
Oe

�
�1ÿ n�r,ar,b � dab

�
�1� n��ln r� 1� ÿ �1ÿ n�

2

��
dO 0 �28�

Di�erentation (28) and denote r,z��x 0zÿx z�=r � `z: By using the integration scheme illustrated in Fig. 3

Fig. 3. The integration scheme inside an elliptical inclusion.
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and choosing the polar coordinate: dO 0 �r dr dy, Eq. (28) leads to

w,z�x� �
k�ab
4p

� 2p

0

�r
0

��1ÿ n��daz`b � dbz`a ÿ 2`a`b`z
�� �1� n�`zdab

	
dr dy

where r � r�`m, xm� is the root of the quadratic equation:

�x1 � r`1�2
a2
1

� �x2 � r`2�2
a2
2

� 1 �29�

Solving Eq. (29), we obtain

r
ÿ
`m, xm

� � ÿ f

g
2

�����������������
f 2

g2
� e

g

s
�30�

where f � lmxm, lm � `m
a 2
m
, g � ` 2

1

a 2
1

� ` 2
2

a 2
2

, e � 1ÿ x 2
1

a 2
1

ÿ x 2
2

a 2
2

:Because 2
��������������������������
f 2=g2 � e=g

p
is an even function of

`�`1, `2�, subsequently,

w,z�x� � ÿ
k�ab
4p

� 2p

0

�
lmxm

g

���1ÿ n��daz`b � dbz`a ÿ 2`a`b`z
�� �1� n�`zdab

	
dy �31�

and furthermore

w,zZ�x� � ÿ 1

4p

� 2p

0

�
lmdmZ
g

�
gzabk

�
ab dy � ÿk

�
ab

4p

� 2p

0

lZgzab
g

dy �32�

where

gzabM�1ÿ n��daz`b � dbz`a ÿ 2`a`b`z
�� �1� n�`zdab �33�

Since w,zZ � w,Zz, we symmetrize the integral representation (32),

kzZ � 1

2
�w,zZ � w,Zz � �

k�ab
8p

� 2p

0

ÿ
lZgzab � lzgZab

�
g

dy �34�

De®ne tensor SzZab as

SzZab � 1

8p

� 2p

0

ÿ
lZgabz � lzgabZ

�
g

dy �35�

We then obtain the desired result,

kzZ � SzZabk
�
ab �36�

where tensor SzZab is the Eshelby tensor of thin plates.

Remark 2.1. Obviously, the induced curvature inside the elliptical inclusion is constant, which is the
reminiscence of Eshelby's classical result in linear elasticity, in which the induced strain inside the
ellipsoidal inclusion is constant (Eshelby, 1957). Qin et al. (1991) had reached the same conclusion.
Nevertheless, there are some di�erences in the expression of tensor SzZab between present result and the
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result given by Qin et al.. In Appendix A, explicit expressions for every component of SzZab are given, and
they are also compared with the results in Qin et al. (1991)

Remark 2.2. The existence of integrals (28), Eq. (31), and Eq. (32) can be shown in a similar fashion as
done by Kellog (1953). A discussion of general symmetrized gradient may be found in Torquato (1997).
One of the mistakes in Qin et al. (1991) is that the gradient ®eld is never symmetrized.

3. Variational inequalities for thin plates

Over the years, the abstract structure of comparison variational principle has been developed. It
departed from the original Hashin±Shtrikman formulation (Hashin and Shtrikman, 1962a, 1962b),
adding the contribution from Hill (1963b), then evolving to today's Talbot and Willis formulations
(Talbot and Willis, 1985; Willis, 1989), which possess both elegance in theory and generality in
application. For a contemporary treatment, Talbot and Willis' formulation is adopted here to derive the
variational inequalities for thin plates. As a systematic study, the elementary bounds (Voigt, 1889;
Reuss, 1929) are also studied in the framework of variational inequalities. At the ®rst sight, such
extension to thin plate theory may seem to be trivial. However, we are now dealing with the variational
principles of a fourth order partial di�erential equations, which is di�erent from the governing
equations of linear elasticity, such as how to choose prescribed boundary conditions for comparison
plates. To facilitate the presentation, a few de®nitions are in order. De®ne following function spaces

W1�O�M
�
wjw 2 C 2�O�; w � ŵ and wn � @w

@n
� ĉn, 8x 2 @O

�

W2�O�M
�
wjw 2 C 4�O�; r 2r 2w � 0, 8x 2 @O

	
W3�O�M

�
wjw 2 C 2�O�; w � ÿ1

2
hkabixaxb, 8x 2 @O

�

M0OM
�
mabjmab 2 C 2�O�; mab, ab � 0,

	
M1�O�M

�
mabjmab 2M0, and

�
Qn � @Mns

@s

�
� V̂n and Mn � M̂n, 8x 2 @O

�

M2�O�M
�
mabjmab 2 C 2�O�; mab � hmabi and mab, b � 0, 8x 2 @O	

K0�O�M
�
kabjkab � ÿw,ab;

	
K1�O�M

�
kabjkab � ÿw,ab;w 2W1�O�;

	
K2�O�M

�
kabjkab � ÿw,ab;w 2W1�O� \W2�O�;
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K3�O�M
�
kabjkab � ÿw,ab;w 2W1�O� \W3�O�;

	
The density of the linear elastic energy of a thin plate, U(k) is a quadratic form:

U�k� � 1

2
LabzZkabkzZ �37�

It is evident that the potential energy density function is convex, lower semicontinuous, and proper. The
moment tensor, m�mabea 
 eb can then be obtained from the constitutive relation,

mab � @U�k�
@kab

, or m 2 @kU�k� �38�

where @k is the notation for sub-di�erential (e.g. Ekeland and Temam, 1976). By Fenchel±Legendre
transformation, the density of complementary energy is

U ��m� � sup
k

�
m: kÿU�k�	 �39�

The constitutive relations inverse to Eq. (38) is

kab � @U ��m�
@mab

, or k 2 @mU
��m� �40�

3.1. Elementary variational inequalities and elementary bounds

We begin with listing some elementary variational inequalities that are based on the principle of
minimum potential energy and the principle of minimum complementary energy of thin plates. For the
®rst type boundary condition, 8kab 2K1�O�, the plate's potential energy is de®ned as

P�k�M1

2

� �
O
LabzZkabkzZ dO �41�

We denote E�k� � P�k�, if kab 2K2�O� �K1�O�: The principle of minimum potential energy states that

E�k� � inf
k2K1�O�

P�k� �42�

Under the same type of boundary conditions, the complementary energy of the plate is

G�m� � 1

2

� �
O
NabzZmabmzZ dOÿ

�
@O

�
Qn � @Mns

@s

�
w0 dS�

�
@O

Mn
@w0

@n
dS

� 1

2

� �
O
NabzZmabmzZ dOÿ

� �
O
mabk

0
ab dO �43�

where mab 2M0�O�, w0 2W1�O�:
The principle of minimum complementary energy states that

ÿE�k� � sup
m2M0�O�

G�m� �44�

or
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E�k� � inf
mEM0�O�

� � �
O
mabk

0
ab dOÿ 1

2

� �
O
NabzZmabmzZ dO

�
, 8k0ab 2K1�O� �45�

Consider the second type boundary condition (force prescribed), the overall complementary energy is

G�m� � 1

2

� �
O
NabzZmabmzZ dO, 8mab 2M1�O� �46�

The principle of minimum complementary energy states that

E ��m� � inf
m2M1�O�

G�m� �47�

where the minimizer m 2M1�O� ensures that kab � NabzZmzZ and kab �ÿw,ab,w 2W2�O�: Accordingly,
the potential energy in this case is

P�k� � 1

2

� �
O
LabzZkabkzZ dOÿ

�
@O

�
Q0

n �
@M0

ns

@s

�
w dS�

�
@O

M0
n

@w

@n
dS

� 1

2

� �
O
LabzZkabkzZ dOÿ

� �
O
m0

abkab dO �48�

where kab 2K0O and m0
ab 2M1�O�:

The principle of minimum potential energy states that P�k� attains its minimum, when
kab � NabzZm

0
zZ,

E ��m� � inf
k2K0

� � �
O
m0

abkab dOÿ 1

2

� �
O
LabzZkabkzZ dO

�
�49�

The above elementary variational inequalities have the exactly same structures as their counterparts in
linear elasticity (see Hill, 1963b). Now, we are in a position to discuss the associated elementary bounds.
Consider the de¯ection prescribed boundary condition, and let the boundary conditions compatible with
the prescribed de¯ection value at dO, i.e

w�x� � ÿ1
2
hkabixaxb 8x 2 @O �50�

In other words, w 2W1�O� \W3�O� M

Wd�O�: 8w 2Wd�O�, we make following decomposition,

w�x� � ÿ1
2
hkabixaxb � r�x�, 8x 2 O �51�

It is obvious that r�x� � 0, 8x 2 @O, and 1
jOj
� �

O r,ab dO � 0: One may further derive that

1

jOj
� �

O
r,ab dO � 1

jOj
�
@O

r,anb ds � 0�)r,a � 0, 8x 2 @O �52�

Let k 0ab � ÿr,ab: We may de®ne a null space of L2�O� as

Kn�O� �
�
kabjkab � ÿw,ab, w 2 C 2

0
�O� and 1

jOj
� �

O
kab dO � 0

�
�53�

such that kab � �kab � k 0ab and k 0 2 Kn�O�: Following Willis (1989), by denoting U�k� � U� Åk, k 0 �, the
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overall potential energy can then be de®ned as

~P� Åk� � inf
k 02Kn�O�

1

jOj
� �

O
U
ÿ

Åk, k 0
�

dO �54�

For linear elastic thin plate, one can identify ~P� �k� immediately,

1

jOj
� �

O
U
ÿ

Åk, k 0
�

dO � 1

2jOj
� �

O
LabzZ

�
�kab � k 0ab

��
�kzZ � k 0zZ

�
dOr 1

2jOj
� �

O
LabzZ

�kab �kzZ dO

� 1

2
hmabi hkabi �55�

As a matter of fact, 8w 2W1�O� \W3�O�, and 8mab 2M1�O� \M2�O�, by Lemma 2.4 one may show
that

hm:ki � 1

jOj
� �

O
m:k dO � hmi:hki �56�

Then the overall potential energy under the prescribed de¯ection boundary condition is

~P� Åk� � 1

2
hmi:hki �57�

The inequality (42) can then be modi®ed as

~P� Åk� � inf
k 02Kn�O�

P
ÿ

Åk, k 0
�
RP� Åk� �

Xn�1
r�1

crPr� Åk� �58�

where cr�hjOrj=hjOj � jOrj=jOj, and Pr� Åk�M
� �

Or U� Åk� dO: Eq. (58) is the well-known Voigt bound.
For the second type boundary problem, the prescribed force boundary conditions �Qn � @Mns=@ s� �

V̂n and Mn � M̂n is chosen such that they are compatible with the special boundary value of moments:

mab � hmabi, mab, b � 0, 8x 2 @O
For mab 2M1�O� \M2�O�, we make the decomposition

mab � hmabi � tab �59�
By virtue of Lemma 2.3, it can be readily shown that

tab � 0, tab, b � 0, 8x 2 @O �) 1

jOj
� �

O
tab dO � 0 �60�

and furthermore, tab 2Mn where

Mn�O�; �
�
mabjmab, ab � 0,

1

jOj
� �

O
mab dO � 0

�
�61�

Accordingly, one can de®ne the overall complementary energy potential as

~G� Åm�M inf
ttt2Mn�O�

G� Åm, ttt� �62�
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Again, for linear elastic plate, we can identify ~G� Åm� as

G� Åm; ttt� � 1

2

� �
O

ÿ
�mab � tab

�
NabzZ

ÿ
�mzZ � tzZ

�
dOr1

2

� �
O

ÿ
NabzZ �mab �mzZ

�
dO � 1

2
hmabi hkabi �63�

The variational inequality (62) furnishes the estimate

~G� Åm�M inf
ttt2Mn�O�

G� Åm, ttt�RG� Åm� �
Xn�1
r�1

crGr� Åm� �64�

where Gr� Åm� � � �Or U �� Åm� dO Eq. (64) is the well-known Reuss bound.

3.2. The Hashin-Shtrikman/Talbot±Willis type principles

Consider the ®rst type (de¯ection prescribed) boundary-value problem. Let w 2W1�O� be a special
kinematic admissible de¯ection ®eld, which is the superposition:

w�x� � w0�x� � w1�x� �65�
such that w0�x� is a solution of the ®rst type boundary-value problem in the comparison plate, which
has the elastic sti�ness, L0

abzZ; and w1�x� 2 C 2
0 �O�: Accordingly,

kab � k0ab � k1ab �66�

where fk1abgMfÿw1
,abg 2 B, the closed subspace of �L2�O��3: In addition that �w0, k0ab� is kinematically

admissible, for the comparison plate, we have: m0
ab � L0

abzZk
0
zZ, m0

ab, ab � 0: We are looking for the
solution of the following optimization problem:

�The primal problem� P: inf
k12B

P�k1� �67�

where

P�k1 �M
� �

O
U
ÿ
k0 � k1

�
dO � 1

2

� �
O
LabzZ

�
k0ab � k1ab

��
k0zZ � k1zZ

�
dO �68�

Let m� 2 B�, the dual space of B. De®ne the dual potential P��m��,

P��m�� � sup
k12B

�ÿ
m�, k1

�
ÿP�k1�	: �69�

We say, m� 2 B0, the set of annihilators of B, ifÿ
m�, k1

�
�
� �

O
m�abk

1
ab dO � 0 �70�

which posts additional constraints on m� (see Lemma 2.1). Subsequently,

P�k1 � �P��m��r0, 8m� 2 B0 �71�
it then implies
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ÿP��m��R inf
k12B

PRP�k1� �72�

This also suggests a dual problem

�The dual problem� P�: sup
m�2B 0

�
ÿP��m��

	
: �73�

For practical purpose, instead of optimizing the dual problem (73) of the de¯ection prescribed
boundary-value problem, it is often convenient to consider a somewhat equivalent problem: optimize the
complementary potential energy under the force prescribed boundary-value problem. De®ne

G�m1� �
� �

O
U �

ÿ
m0 �m1

�
dO � 1

2

� �
O
NabzZ

�
m0

ab �m1
ab

��
m0

zZ �m1
zZ

�
dO �74�

where m � m0 �m1 is a special statically admissible moment ®eld; in which m0 is the solution of the
second type boundary problem in the comparison plate, and m1 is the perturbation, such that m1 2
H�O� � �L2

0 �O��3:
Consider the optimization problem

Pd: inf
m12H�O�

G�m1� �75�

It has a duality approach too, i.e. 8k� 2 H 0, the annihilator set of H, i.e.

H 0M
�

k�
� �

O
m1

abk
�
ab dO � 0, 8m1 2 H

�
�76�

The restriction on k�ab has been stated in Lemma 2.2. Consequently, we have

ÿG��k��R inf
m12H�O�

PdRG�m1� �77�

where

G��k��M sup
m12H

�ÿ
m1, k�

�
ÿ G�m1�	 �78�

Remark 3.1. The conditions that de®ne the annihilator sets of B and H, (70) and (76) have important
physical interpretations. Eq. (70) is related to the virtual work identity� �

O
m�abk

1
ab dO �

� �
O
m�ab

�
kab ÿ k0ab

�
dO � 0 �79�

and (76) is related to the virtual complementary work� �
O
k�abm

1
ab dO �

� �
O
k�ab
�
mab ÿm0

ab

�
dO � 0 �80�

Now, we are in the position to derive the Hashin±Shtriman/Talbot±Willis type principle. Introduce
two comparison of functionals
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P0
�k1�M1

2

� �
O
U0

ÿ
k0 � k1

�
dO � 1

2

� �
O
L0
abzZ

�
k0
ab � k1

ab

��
k0
zZ � k1

zZ

�
dO, if LabzZ ÿ L0

abzZ > 0

P0
�k1�M1

2

� �
O
U0

ÿ
k0 � k1

�
dO � 1

2

� �
O
L0
abzZ

�
k0
ab � k1

ab

��
k0
zZ � k1

zZ

�
dO, if LabzZ ÿ L0

abzZ < 0

and the associated potential di�erences

F�k1�MP�k1� ÿP0
�k1 �, DLabzZMLabzZ ÿ L0

abzZ > 0 �81�

�F�k1�MP�k1� ÿP0�k1 �, DLabzZMLabzZ ÿ L0
abzZ < 0 �82�

Then de®ne the moment polarization tensor tab, such that

mab � L0
abzZkzZ � tab, or tab �

�
LabzZ ÿ L0

abzZ

�
kzZ �83�

By the transformations,

F��ttt� � sup
k12B

�ÿ
ttt, k1

�
ÿ F�k1�	 �84�

�F
��ttt� � inf

k12B

�ÿ
ttt, k1

�
ÿ �F�k1�	 �85�

Note that the supremum in Eq. (84) and in®mum in Eq. (85) are attained when Eq. (83) holds. It can be
readily shown that the primal problem can be realized by the following comparison strategy,

inf
k12B

�ÿ
ttt, k1

�
�P0

�k1�	ÿ F��ttt�Rinf PR inf
k12B

�ÿ
ttt, k1

�
�P0�k1�	ÿ �F

��ttt� �86�

Substituting k1ab�DLÿ1abzZtzZÿk0ab into Eqs. (84) and (85), we have

F��ttt�
ÿ
or �F

��ttt�
�

�
� �

O

�
tabkab ÿ 1

2
DLabzZk

1
abk

1
ab ÿ

1

2
DLabzZk

0
abk

0
zZ ÿ LabzZk

0
abk

1
zZ � L0

abzZkabk
1
zZ

�
dO

� 1

2

� �
O

�
DLÿ1abzZtabtzZ ÿ tabk0ab

�
dO

�87�

Compute

IM inf
k12B

�ÿ
ttt, k1

�
�P0

�k1�	ÿ F��ttt� �88�

IM inf
k12B

�ÿ
ttt, k1

�
�P0

�k1�	ÿ F��ttt� �89�

The in®ma are attained when (recall and compare with the Remark 3.1)
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� �
O

�
L0
abzZkzZ � tab

�
k1ab dO � 0 �90�

or the subsidiary condition if the functions involved are su�ciently smooth�
L0
abzZk

1
zZ � tab

�
,ab
� 0 �91�

One will ®nd that

I�or �I� �
� �

O

�
U0
�k0� ÿ 1

2

�
DLÿ1abzZtabtzZ ÿ tabk1ab ÿ 2t0abk

0
ab

��
dO �92�

We just showed that Eq. (86) is exactly the same as the Hashin±StriLman±Hill type inequality:� �
O

ÿ
U�k� ÿU0

�k0�� dOÿ
� �

O

�
1

2

�
DLÿ1abzZtabtzZ ÿ tabk1ab ÿ 2tabk0ab

��
dO �93�

The direction of the inequality depends on the positive de®niteness or negative de®niteness of the tensor
DLÿ1abzZ: Similarly, consider the prescribed moment boundary-value problem and introduce two
comparison functionals

G0
�m1� � 1

2

� �
O
N 0

abzZ

�
m0

ab �m1
ab

��
m0

zZ �m1
zZ

�
dO, if NabzZ ÿN0

abzZ > 0

G0
�m1� � 1

2

� �
O
N 0

abzZ

�
m0

ab �m1
ab

��
m0

zZ �m1
zZ

�
dO, if NabzZ ÿN0

abzZ < 0

and form the potential di�erences

G�m1�MG�m1� ÿ G0�m1� �94�

�G�m1�MG�m1� ÿ G0
�m1� �95�

Recall that m0 is the solution of the prescribed moment boundary-value problem and m1 belongs to a
closed subspace of �L2�O��3: By de®ning ``the polarization curvature'' as

ZabM
�
NabzZ ÿN0

abzZ

�
mzZ, or kab � N 0

abzZmzZ � Zab �96�

the dual potential di�erences can be realized as

G��ZZZ�M sup
m12H

�ÿ
ZZZ, m1

�
ÿ G�m1�	 �97�

�G
��ZZZ�M inf

m12H

�ÿ
ZZZ, m1

�
ÿ �G�m1�	 �98�

which ensures the following estimate of optimization problem (75)

inf
m12H

�ÿ
ZZZ, m1

�
� G0
�m1 �	ÿ G��ZZZ�R inf PdR inf

m12H

�ÿ
ZZZ, m1

�
� G0�m1�	ÿ �G

��m1� �99�
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Substituting m1
ab�DN ÿ1abzZZzZÿm0

ab into Eqs. (97) and (98), the supremum and in®mum will be attained,
and it yields

G��ZZZ�
�

or �G
��ZZZ�

� � �
O

�
1

2
DN ÿ1abzZZabZzZ ÿ Zabm

0
ab

�
dO �100�

Compute

JM inf
m12H

�ÿ
ZZZ, m1

�
� G0
�m1�	ÿ �G

��ZZZ� �101�

�J: inf
m12H

�ÿ
ZZZ, m1

�
� G0�m1�	ÿ �G

��ZZZ� �102�

Again, recall Remark 3.1 the in®ma can be reached if the principle of virtual complementary work is
applied� �

O

ÿ
NabzZmzZ � Zab

�
m1

ab dO � 0 �103�

which is equivalent to the following subsidiary conditions if the functions involved are su�ciently
smooth,

m1
ab, ab � 0, 2ag kcab, bg � 0 �104�

where kcab�N 0
abzZm

1
zZ�Zab:It is not di�cult to ®nd that

J�or �J� �
� �

O

�
U ��m0 � ÿ 1

2

�
DN ÿ1abzZZabZzZ ÿ Zabm

1
ab ÿ 2Zabm

0
ab

��
dO �105�

The variational estimates (99) take the form,� �
O

ÿ
U ��m� ÿU �0�m�

�0
dOÿ 1

2

� �
O

n
DN ÿ1abzZZabZzZ ÿ Zabm

1
ab ÿ 2Zabm

0
ab

o
dO �106�

4. Overall elastic sti�ness estimate

In this section, the elastic sti�ness/compliance of suitable composite plates are estimated. Consider
isotropic case:

LabzZ � D�1ÿ n�
2

ÿ
dazdbZ � daZdbz

��DndabdzZ � D�1ÿ n�IabzZ � 2DnJabzZ �107�

NabzZ �
�1ÿ n�

2D�1ÿ n2 �
ÿ
dazdbZ � daZdbz

�ÿ n
D�1ÿ n2�dabdzZ �

1

D�1ÿ n�IabzZ ÿ
1

D�1ÿ n2 �JabzZ �108�

where IabzZM1
2�dazdbZ � daZdbz�, JabzZM1

2dabdzZ: De®ne KabzZM1
2�dazdbZ � daZdbzÿ dabdzZ�: Thus, I � J�K

and J � J � J, J �K � K � J � 0, K �K � K: The elastic sti�ness and compliance tensors can then be put
into canonical forms
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LabzZ � 2krJabzZ � 2mpKabzZ �109�

NabzZ � 1

2kp
JabzZ � 1

2mr
KabzZ �110�

where

kpM
Dp�1� n�

2
� Eh3

24�1ÿ n� �111�

mpM
Dp�1ÿ n�

2
� Eh3

24�1� n� �112�

Dp � kp � mp, �113�

n � kp ÿ mp
kp � mp

�114�

4.1. Hashin±Shiribman type upper/lower bounds

It can be shown that (see Appendix B)

k1 � ÿSttt � ÿ
� �

O
S1�x 0 ÿ x��tttÿ httti��x 0 � dO 0 �115�

Hence Eq. (93) takes the form

2�P0 ÿP�
ÿ
ttt, DLÿ1ttt

�
� �ttt, Sttt� ÿ 2

ÿ
ttt, k0

�
�116�

which has the same form as the linear elasticity solutions, except that stress polarization becomes
moment polarization and strain perturbation becomes curvature perturbation. Following standard
procedure (again readers are referred to Willis, 1977, 1981 or Walpole, 1966a, 1981), one should have
no di�culty to derive that

Åk�Lÿ ÅL� ÅkE0 �117�
where ÅL � Pn

r�1crLrAr�
Pn

r�1crAr�ÿ1, Ar � �I � P0�Lr ÿ L0��ÿ1 For macroscopically isotropic plate (see
Appendix B)

Pÿ10 � L0 � L�0 �118�
and L�0�2k�pJ�2m�pK with k�p�m0p;m�p�2k0p�m0p:

Remark 4.1. By using the variational inequalities (106), one can also derive that

Åm�Nÿ ÅN� Åme0 �119�
where ÅN � Pn

r�1crNrBr�
Pn

r�1crBr�ÿ1, Br��I�Q0�NrÿN0��ÿ1 with Q0 � N0 � N�0 and N�0� 1
2k�p

J � 1
2m�p

K:
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Let

kgM max
1RrRn

n
k�r�p

o
, k�g � mg

klM min
1RrRn

n
k�r�p

o
, k�l � ml

mgM max
1RrRn

n
m�r�p

o
, m�g � 2kg � mg

mlM min
1RrRn

n
m�r�p

o
, m�l � 2kl � ml �120�

Since (see Walpole, 1969),

ÅL �
Xn
r�1

crLrAr

 Xn
r�1

crAr

!ÿ1
�
"Xn

r�1
cr
�
Lr � L�0

�ÿ1#ÿ L�0 �121�

it readily yields"Xn
r�1

cr

�
k�l � k�r�p

�ÿ1#ÿ k�l RkpR
"Xn

r�1
cr

�
k�g � k�r�p

�ÿ1#ÿ k�g �122�

"Xn
r�1

cr

�
m�l � m�r�p

�ÿ1#ÿ m�l RmpR
"Xn

r�1
cr

�
m�g � m�r�p

�ÿ1#ÿ m�g �123�

The above results resemble the classical results in micromechanics of linear elasticity (Hashin and
Shtrikman, 1962b; Walpole, 1969) in character, but having di�erent physical contents as well as
numerical quantities. By adding Eqs. (122), (123) and utilizing Eq. (113), an explicit estimate for the thin
plate's rigidity is obtained"Xn

r�1
cr

�
k�l � k�r�p

�ÿ1#� "Xn
r�1

cr

�
m�l � m�r�p

�ÿ1#ÿ 2DlRDpR
"Xn

r�1
cr

�
k�g � k�r�p

�ÿ1#

�
"Xn

r�1
cr

�
m�g � m�r�p

�ÿ1#ÿ 2Dg �124�

Following Hill (1965), we denote

apM
kp

kp � k�p
�125�

bpM
mp

mp � m�p
�126�
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One may verify that

ap � 1ÿ 2bp; ap � 1� n
2

; bp �
1

4
�1ÿ n� �127�

ÿ1 < nR1

2
�)0 < apR

3

4
;

1

8
< bpR

1

2
�128�

It is interesting to compare them with their counterparts in linear elasticity:

ae � 1� n
3�1ÿ n� �129�

be �
2�4ÿ 5n�
15�1ÿ n� �130�

For the thin plates that are made of two phase composite materials, assuming k�1�p ÿ k�2�p > 0, m�1�p ÿ
m�2�p > 0 one will have

k�2�p �
c1

�
k�1�p ÿ k�2�p

�
1� c2ap2

�
k�1�p =k

�2�
p ÿ 1

�RkpRk�1�p �
c2

�
k�2�p ÿ k�1�p

�
1� c1ap1

�
k�2�p =k

�1�
p ÿ 1

� �131�

m�2�p �
c1

�
m�1�p ÿ m�2�p

�
1� c2bp2

�
m�1�p =m

�2�
p ÿ 1

�RmpRm�1�p �
c2

�
m�2�p ÿ m�1�p

�
1� c1bp1

�
m�2�p =m

�1�
p ÿ 1

� �132�

They lead to the following estimate of the thin plate's rigidity

D2 �
c1

�
k�1�p ÿ k�2�p

�
1� c2ap2

�
k�1�p =k

�2�
p ÿ 1

� � c1

�
m�1�p ÿ m�2�p

�
1� c2bp2

�
m�1�p =m

�2�
p ÿ 1

�
RDpR

D1 �
c2

�
k�2�p ÿ k�1�p

�
1� c1ap1

�
k�2�p =k

�1�
p ÿ 1

� � c2

�
m�2�p ÿ m�1�p

�
1� c1bp1

�
m�2�p =m

�1�
p ÿ 1

� �133�

At least in mathematical formality, Hashin±Shtrikman bounds in linear elasticity provide estimates for
the plate's rigidity based on ``folk wisdom'', if the applicability is granted, though these estimates are
not optimal in general. The interesting part is that, there exists a direct comparison between the
congruous bounds and the Hashin±Shtrikman bounds. For the case of two phase composite plates, this
could be done by taking the thick plate as a 3D isotropic elastic medium, and ®rst evaluating the bulk
and shear moduli via Hashin±Shtrikman bounds
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leff � leff�l1, l2, c1, c2� �134�

Geff � Geff�G1, G2, c1, c2� �135�
and then deriving the e�ective Young's modulus and Poisson's ratio as

Eeff � Geff�3leff � 2Geff �
leff � Geff

�136�

neff � leff

2�leff � Geff � �137�

and ®nally the e�ective ¯exural rigidity,

Deff � Eeffh
3

12
ÿ
1ÿ n2

eff

� : �138�

The comparison between the congrnous bounds and the Hashin±Shtrikman bounds are displayed in
Fig. 4(a) and (b). In the ®rst examples, the Young's modulus of the E-glass ®bers is: 70 GPa, and its
Poisson's ratio is: 0.25; the Young's modulus of epoxy matrix is: 2.8 GPa and its Poisson's ratio is: 0.35.
In the second example, the Young's modulus of the Graphite ®bers is 230 GPa, and its Poisson's ratio is
0.26; whereas, the Young's modulus of the epoxy matrix is 3.19 GPa and its Poisson's ratio is 0.35. One
may observe that ®rst the congruous bounds and Hashin±Shtrikman bounds are very close in both
examples; second, in both examples, the congruous bounds are tighter than Hashin±Shtrikman bounds,
because the congruous bound gives higher estimate in lower bound, and it o�ers almost the same
estimation on upper bound (see: Fig. 4(a) and (b)). This makes sense because based on the Love±
Kirchho� assumption, the thin plate should be sti�er than the unconstrained 3D elastic continuum.

4.2. Self-consistent estimate

Because of the similarity between the mathematical structure of thin plate's governing equations and
the governing equations of linear elasticity, the general framework of self-consistent approximation
within the realm of linear elasticity should be valid in the thin plate theory as well. One can simply
replace ``eigenstrain'' to ``eigen-curvature'' and ``transformation stress'' into ``transformation moment''.
Of course, the physical interpretation on elastic sti�ness is di�erent, and most of all, the transformation
tensor P is entirely di�erent in quantity. Based on the equivalent inclusion theory (Hill, 1965;
Budiansky, 1965), we assume that there exists a overall constraint sti�ness, L�, or compliance, N�, such
that in each phase of the plate

Åmr ÿ Åm � L�
ÿ

Åkÿ Åkr

�
�139�

Åkr ÿ Åk � N�� Åmÿ Åmr � �140�
or

�L� � Lr � Åkr � �L� � L� Åk �141�
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Fig. 4. Comparison between the congruous bounds and Hashin±Shtrikman bounds on the thin plate's rigidity: (a) the solid line:

congruous bound; (b) the dash line: Hashin±Shtrikman bound.
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�N� � Nr � Åmr � �N� � N� Åm: �142�

Here, the physical quantities are the average moments and average curvatures. Apparently, this
postulate makes sense in the generalized eigenstrain formulation. Furthermore, from Eqs. (141) and
(142), one may derive,

Xn
r�1

cr
Lr � L

� 1

L� � L
� P�)

Xn
r�1

cr
�
�Lr ÿ L�ÿ1�P

�ÿ1� 0 �143�

Xn
r�1

cr
Nr � N

� 1

N� � N
� Q�)

Xn
r�1

cr
�
�Nr ÿ N�ÿ1�Q

�ÿ1� 0 �144�

or in the equivalent forms

L �
(Xn

r�1
crLr

�
I� P�Lr ÿ L��ÿ1)(Xn

s�1
cs
�
I� P�Ls ÿ L��ÿ1)ÿ1 �145�

N �
(Xn

r�1
crNr

�
I�Q�Nr ÿ N��ÿ1)(Xn

s�1
cs
�
I�Q�Ns ÿ N��ÿ1)ÿ1 �146�

To entertain the thought that this thin plate version's self-consistent scheme is practically useful, in what
follows, we calculate the elastic sti�ness for a special two-phase composite plate Ð a sheet of ``Swiss
cheese'' (Fig. 5), in other words, one phase of the composite (say phase 1) is taken as cavity, which
implies that L�1� � 0, or k�1�p � 0 � m�1�p � 0: For two phase composite plate, Eq. (143) takes the form

c1
Lÿ L2

� c2
Lÿ L1

� P �147�

where

Fig. 5. A piece of ``Swiss cheese'', an example of thin plate with distributed cavities.
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P �
 

1

2kp � 2mp
,

1

4kp � 4mp

!
�
 

ap
2kp

,
bp
2mp

!
�148�

Let k�1�p � m�1�p � 0 We can solve kp in terms of mp i.e.

kp �
c2k�2�p mp

c1k�2�p � mp
�149�

and mp satis®es the following quadratic equation,

m2
p �

h
�1� c2�k�2�p � �1ÿ 2c2�m�2�p

i
mp � �1ÿ 3c2 �k�2�p m�2�p � 0 �150�

If the matrix is incompressible, k�2�p 41, we have

mp �
�3c2 ÿ 1�
1� c2

m�2�p �151�

kp � c2
c1

�3c2 ÿ 1�
�1� c2� m

�2�
p �152�

and

Dp � �3c2 ÿ 1�
�1� c2�c1m

�2�
p �153�

Obviously, the volume of the cavity should not exceed two third of the total volume of the plate. It is
interesting to note that the similar problem solved in the context of linear elasticity (see Willis, 1981),
the total cavity volume should not excess to one half of the total volume of the composite medium.

5. Conclusions

The basic idea of the approach taken in this study is that, one assumes the establishment of thin plate
theory ®rst, or a priori, then proceeds homogenization posteriorly; whereas, the conventional thought
implicitly assumes that homogenization should be performed ®rst, whereas, the establishment of
structure theories comes second. By reversing the order, this paper presents a synergetic approach of a
micromechanics that is congruous with the Love±Kirchho� plate theory. It is demonstrated that there is
parallel structure between the micromechanics in linear elasticity and the Love±Kirchho� plate theory.
This type analogue, we believe, exists in other ad hoc structural theories as well, such as Reissner±
Mindlin plate theory (see Li, 1999) and linear elastic shell theory, though the mathematical structure
might be more complex than what have been shown here.

To study and to develop micromechanics models that are congruous with the particular structural
mechanics will provide engineers alternative methods to analyze associated composite structural
components. It is fair to say that this new approach may shed some new light on understanding
composite structures through structural mechanics point of view, rather than just from the viewpoint of
material science. This contribution provides, in the ®rst time, a congruous estimate of elastic sti�ness of
elastic thin plate. Even though the formulas derived in this paper resemble the classical formulas of
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linear elasticity in character, they obviously di�er in quantities. Nevertheless, the application of this
theory is subjected to certain restrictions, such as distribution patterns of inhomogeneities.
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Appendix A. Evaluation of tensor SabzZ

Based on formula (35), we calculate the tensor SabzZ:

S1111 �
�3ÿ n�
4p

I1 ÿ
�1ÿ n�a2

1

2p
I11 �154�

S1122 �
�1� n�
4p

I1 ÿ
�1ÿ n�a2

2

2p
I12 �155�

S1212 � S2121 �
�1ÿ n�
8p
�I1 � I2� ÿ

�1ÿ n�
4p

ÿ
a2
1 � a2

2

�
I12 �156�

S2211 �
�1� n�
4p

I2 ÿ
�1ÿ n�a2

1

2p
I12 �157�

S2222 �
�3ÿ n�
4p

I2 ÿ
�1ÿ n�a2

2

2p
I22 �158�

S1112 � S1121 � 0 �159�

S2212 � S2221 � 0 �160�

S1211 � S2111 � 0 �161�

S1222 � S2122 � 0 �162�
where

Im � 1

a2
m

� 2p

0

l 2m
g

dy, m � 1, 2 �163�

Iab � 1

a2
a a

2
b

� 2p

0

l 2a l
2
b

g
dy, a, b � 1, 2 �164�
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which satisfy the following identities

I1 � I2 � 2p �165�

a2
1 I11 �

ÿ
a2
1 � a2

2

�
I12 � a2

2 I22 � 2p �166�

a2
1

a2
2

I11 � 2I12 � a2
2

a2
1

I22 � 1

a2
2

I1 � 1

a2
1

I2 �167�

In Qin et al. (1991), both expressions of S1111 and S2222 involve with I12, which seems to be
unreasonable.

Appendix B. Derivation and evaluation of integral operator
P

Consider the fundamental solution of the governing equation:

L0
abzZG

1
,abzZ

ÿ
x, x 0

�� d�xÿ x 0 � � 0 �168�

or MG 1
ab; ab�x, x 0 � � d�xÿx 0 �: The corresponding Green's function is

G1
ÿ
x, x 0

� � ÿ 1

8pD0
r2ln r �169�

Consider the subsidiary equation�
L0
abzZk

1
zZ � tab

�
,ab
� 0 �170�

with the boundary conditions w1�x� � 0, @w
1

@n �x� � 0, 8x 2 @O: Multiplying subsidiary equation (170) with
the Green function (169) and integrating it by using Gauss theorem, one will have

w1�x� � ÿ
� �

O
G1,ab�x 0 ÿ x�ÿtab ÿ htabi��x 0 � dO 0 � �

@O

n
ÿ L0

abzZw
1
,zZ � tab ÿ htabi

o
naG

1
,b dS

ÿ
�
@O

n
ÿ L0

abzZw
1
,zZa � tab, a

o
nbG

1 dS �171�

From Eq. (170), we know that�
@O

n
ÿ L0

abzZw
1
,zZa � tab,a

o
nb dS � 0 �172�

Then, it is plausible that T � fÿL0
abzZw

1
,zZa� tab; agnb oscillates about zero. The same will be true for the

term tab ÿ htabi�nb: It will be most likely that the term L0
abzZw

1
,zZanb too oscillates around zero, because

both, @ 2w1=@s@n and @ 2w1=@s2 are actually zero on the boundary. Thus, by the Saint±Venant principle2,
in the interior region

2 A plate version of Saint±Venant principle is presented in Berdichevskii (1973).
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w1�x� � ÿ
� �

O
G1,ab

ÿ
x 0,x

�ÿ
tab ÿ htabi

��x 0 � dO 0 �173�

and subsequently,

k1abMÿ
X

ttt � ÿ
� �

O
kG

1
ab, lm
�x 0 ÿ x�ÿtlm ÿ htlmi��x 0 � dO 0 �174�

Remark 7.1. Unlike in three-dimensional elasticity, where there is only one boundary integral, there are two
boundary integrals in (171). The argument made for neglecting the ®rst boundary integral is probably not
convincing. On the other hand, however, consider the fact

w,lm � ÿ
� �

O
G1,ablm

ÿ
tab ÿ htabi

�
dO�

�
@O

n
ÿ L0

abzZw
1
,zZ � tab ÿ htabi

o
naG

1
,blm dS

ÿ
�
@O

n
ÿ L0

abzZw
1
,zZa � tab, a

o
nbG

1
,lm dS �175�

Assume the boundary @O is in the remote region, G1,blm40, the contribution from the ®rst boundary
integral is insigni®cant anyway.

Remark 7.2. In both Willis (1977, 1981), the author argued that the e�ects of those boundary integrals are
restricted only in a boundary layer around the boundary of the continuum, such that, for interior points of
the domain, those e�ects can be neglected because they are away from the boundary. Nevertheless, if one
views a thin plate as a 3D continuum as part of the boundary, both its upper and lower surface are very
close to each other, no interior point within the plate is truly far away from the boundary. Thus,
characterized as a lower order manifold, the thin plate presents itself as an exception to those arguments.
It, therefore, seems to us that this is another incentive to develop a thin plate version micromechanics
theory.

Next, assume that the distribution of inhomogeneities is macroscopically isotropic and statistically
homogeneous. Therefore, we can evaluate

P
ttt inside a circular region Ora , in which tab ÿ htabi is

considered to be constant. Thus, one only need to evaluate

P0M
� �

Ora

S1�x� dO �
� �

Ora

kG
1

ab, zZ dO �176�

where Ora is a circular region. By utilizing the result in Section 2, after some calculations, it is not
di�cult to ®nd that

PabzZ �
� �

Ora

kG
1

ab, zZ�x� dO �
1

8�k0p � m0p

�
daZdbz � dazdbZ � dabdzZ

	
�
24 1

2
�
k0p � m0p

�JabzZ � 1

4
�
k0p � m0p

�KabzZ

35 �177�
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that is

P0 � 1

2k0p � 2k�p
J� 1

2m0p � 2m�p
K �178�

with k�pMm�p, m
�
pM2k0p � m0p:
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